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INTRODUCTION

Traffic surveillance plays a central role in achmngvthe potential promised by Intelligent
Transportation Systems (ITS). In particular, ttave generally judge their experience based on
their speed of travel (or travel time). Thus,etahd local transportation agencies, as well as
private traffic information service providers, aery interested in obtaining accurate speed data.
There are many technical approaches to obtainisgitita (either measured or estimated). Of
these, inductive loop detectors are, arguablymntibst widely deployed traffic condition
surveillance device. In some cases, inductive betpctors are installed in pairs in a travel lane
in order to allow for direct speed measurementweiger, in many cases, a single loop detector
is installed in a lane due to space or economisidenations. Direct measurements from single
loop detectors are limited to vehicle counts antlpeancy (defined as the portion of time that
the detector senses a vehicle — serving as a sttierogeasure of traffic density), while speeds are
not directly measured. Therefore, traffic engisdeave devoted considerable effort to develop
methods to estimate speeds from the availabletdinegle loop measurements.

Current single loop speed estimation practice @brbadly classified into two categories: ¢1)
factor approach, and (2) stochastic filtering applo In theg-factor approach, an estimate of

the average vehicle length of all vehicles passwey the detector during the measurement
interval is treated as a conversion factor fomeating speed using the measured occupancy and
volume. In the stochastic filtering approach, tinebservable speed process is related to the
measurement processes using a stochastic filtea/lysa Kalman filter.

This research project sought specifically to depelo accurate speed estimation methodology
for single loop detectors under congested conditidn this case, the partner in this research, the
Virginia Department of Transportation (VDOT), desirthe ability to improve estimation of

travel times on highly-congested suburban freewsiysh as 1-66 and I1-95 in Northern Virginia.

In particular, errors in travel time estimation idgrtimes of congestion were of great concern.

In speaking with VDOT officials, it became cleaatlyeneral knowledge that traffic was
operating at or near free-flow conditions (i.e.Mfes/hour or higher) was sufficient when
congestion was not being experienced. Howevere tivas a need for accurate speed estimates
under congested conditions. Therefore, the resdaamm developed a method using the Kalman
filter technique, based on an empirical investmainto the relationship among the single loop
measurements. Following a literature review, gport presents the proposed single loop speed
estimation method. Afterwards, the proposed amragevaluated and the innovations of the
approach are demonstrated.



LITERATURE REVIEW

As stated in the introduction, current practicesiigle loop speed estimation can be roughly
classified as either@factor approach, or a stochastic filtering apphoaEocusing on “station
level” speed estimation (i.e. average speed oVéarads at a specific directional cross section of
a facility), this section presents a review of literature organized based on this classification
scheme.

g-factor approach

Theg-factor approach is based on the fundamental ¢raffeam model, i.e., flow = density *
speed. As stated earlier, if one uses occupanaysasogate for density, the following
relationship between speed, flow rate, occupamuy,vaehicle length may be derived as follows
for any sampling interval (Coifman 2001).
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where

vi: speed for time intervaj

g:: flow rate for time interval,

li: mean effective vehicle length (MEVL) for time emvali;
gi: g-factor for time interval.

Examining equations (1a) and (1b), one will nbt theg-factor,g;, is simply the reciprocal of
l;, reflecting the composition of the vehicle popigatpassing the detection zone within the
sampling interval. Of coursel; cannot be directly measured with inductive lo@vg]l; (or g;)
must be estimated. In general, the determiningpfdor g; is the percentage of trucks in the
traffic stream, given their significantly longentgh than passenger cars.

The use of a constagtor |; across sampling intervals had been the focusrbf siudies
(Courage et al. 1976, Mikhalkin et al. 1972); hoes\Vater investigations (as well as field
experience) have shown tigaor |; are generally not constant, but rather time- grats-varying
(Hall and Persaud 1989; Pushkar et al. 1994). Vdnisition ofg-factor values should certainly
be expected due to the variation of the truck pesges between different sampling intervals
and locations. Consequently, many studies have t@educted to dynamically estimate the
g, value.

Guided by empirical observations tlgaapproaches a constant as traffic conditions become
congested, Coifman (2001) developed a simple omligerithm in which exponential smoothing
was used for estimatirigfor free flow conditions, and then for congestedfic conditions, the

li was estimated from the immediately preceding namgested traffic conditions.



Jia et al. (2001) presented empirical evidence shpthatg; varies both spatially and
temporally. In addition, an autoregressive filtexsaused to track thgefactor over time. In order
to cancel the effect of delay, a corrector wasoohticed based on periodic naturagyegactor
during weekdays.

Wang and Nihan (2000) proposed-&ctor estimation procedure using log-linear regien.
Their model was calibrated using data from duapldetector stations that were installed in the
proximity of the single loop detectors within thedway management system (FMS). A
comparison with speed estimation using a figdector showed an improvement in speed
estimation accuracy. As is pointed out in Hellirig@02), however, they did not show the
transferability of the log-linear regression modetoss different FMSs or on facilities managed
by the same FMS.

Hellinga (2002) proposed an approach enhancingdspatenation for FMSs equipped with both
dual loop stations and single loop stations; b#lgidhe single loop station and its adjacent dual
loop stations are treated as a pair, andjtfector estimated from the dual loop stations are
applied to the single loop stations to improve spestimation. Recognizing the systematic bias
resulting from the variation of vehicle populatigressing the paired stations, a volume weighted
exponential smoothing technique was proposed toawgpthe speed estimation. Considering the
implicit assumption of a uniformg-factor across the paired stations, the performahtas
approach is naturally expected to degrade whetréffec conditions between the paired stations
are significantly different.

Stochastic Filtering Approach

As opposed to thg-factor approach, the stochastic filtering approgdates the speed “process”
directly to the measurement processes, considdrangtochastic errors of the processes. Dailey
(1999) designed an extended Kalman filter seedéu pre-calibrated historical mean vehicle
length and speed variance. This design impli@dgumes a constant expected value for the ratio
of individual effective vehicle length over speed &ll the vehicles passing the detection zone
within each sampling interval, which might not hédd all cases. For example, trucks and
passenger cars could have comparable speeds wigfective length varies significantly.

Based on Dailey (1999), Ye (2006) proposed an dhlgorusing Unscented Kalman filters to
resolve the issues in extended Kalman filter, @gfigc¢he filter instability due to the

linearization; however, the concerns discussed @bewmain unresolved.

PROPOSED SINGLE LOOP SPEED ESTIMATION METHOD

This section presents the design of a new singlp-fpeed estimation method. As is mentioned
in the introduction section, the fundamental ratierof the proposed method relies on the
empirical investigation into the single loop mea&snents at the station level. Therefore, in this
section we will first describe the data and the ieicgd evidence observed from these data.
Afterwards, based on the empirical evidence, ttsggtheof a Kalman filter and the corresponding
calibration procedure is described.



Data

In this study, the research team acquired freevadfyd datasets from two different metropolitan
regions. Measurements from loop detector staiiwstalled along I-66 eastbound in Northern
Virginia (NOVA — a suburb of Washington, D.C.), aaldng I-80 eastbound in the Bay Area of
California (CA) were used in this study. Pleaderr® the maps in Figure 1 for the station
locations, and Table 1 for station descriptions.
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Figure 1 Approximate station locations

Table 1 Selected station description

Region Route Direction  Station Number of Lanes Mile Marker
NOVA I-66 East Bound 414 4 57.96
391 4 58.29
403 4 62.89
404 4 63.41
CA [-80 East Bound 401195 4 14.47
400445 4 15.97
400443 4 16.32
400865 4 20.96




In this study, all eight selected stations are th@b detector stations (this allows the research
team to use only single loop measurements forgtimation methodology, and then compare

the results to the measured speeds from the dog)o The measurements for these stations are
aggregated at 5-minute intervals, and are dividenla calibration dataset and an
evaluation/investigation dataset as described bieT2 and Table 3. These tables describe the
traffic conditions experienced at each stationdporting the number of observations falling into
each of the three speed categories, 0-15 mph, 1BpB0Q and 30-45 mph. Note, considering the
focus of the proposed method is on congesteddralffe statistics for observations with speed
greater than 45 mph are not included.

Table 2 Calibration dataset description

Sample Size
Station 0-15 15-30 30-45 Time Period
mph mph mph

414 541 779 219 5/1/2006~6/30/2006

391 1040 774 270 5/1/2006~6/30/2006

403 924 1322 453 5/1/2006~6/30/2006

404 399 951 1637 5/1/2006~7/31/2006
401195 7 280 351 5/4/2006~5/31/2006
400445 0 159 444 5/4/2006~5/31/2006
400443 1 79 552 5/4/2006~5/31/2006
400865 11 138 421 5/4/2006~5/31/2006




Table 3 Evaluation/investigation dataset description

Sample Size
Station 0-15 15-30 30-45 Time Period
mph mph mph

414 787 1024 372 7/1/2006~10/3/2006

391 1471 1130 413 7/1/2006~10/3/2006

403 1578 1114 465 7/1/2006~10/3/2006

404 526 855 1156 8/1/2006~10/3/2006
401195 16 313 361 6/1/2006~7/3/2006
400445 35 259 421 6/1/2006~7/3/2006
400443 36 169 536 6/1/2006~7/3/2006
400865 56 171 385 6/1/2006~7/3/2006

Empirical Investigation of the Single Loop Measurements

Using the evaluation/investigation datasets, Figusbowed theg(o, v) pairs for all stations.

Note in the plots, the whole range of data wasuhet! to show the whole picture of empirical
evidence.
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Figure2 g/ovs. v plots

When examining the plots in Figure 2, first, ond wotice that a linear relationship betwego
andv is evident under congested traffic conditionsllaha stations with eaclg(o, V) pair
deviating closely around an overall linear trerldie denoted bid). This observation showed
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that a linear relationship is acceptable for ratatj/o andv. Second, the linear relationships
consistently pass through the origin, supportiregsiope and hence the variance of the errors
(denoted byR) around the slope can be estimated using a Inregmession without intercept
approach. Moreover, under uncongested traffic timmg, the lineard/o, v) relationship ceases
to exist, which agrees with Coifman (2001), i.@grewith longer sampling intervals, speed
estimates for free flowing traffic are quite noisy.

Furthermore, thél andR were computed using calibration datasets for station and the

results were presented in Table 4. It can be oksgdhat stations along the same route have
consistent parameters, indicating a stable histbpattern oH along a route during congested
traffic conditions. This implies a strategy of ugidual loop stations to calibrate these parameters
for the single loop stations on the same routés iliteresting to note the significant differemce
parameters between the Northern Virginia and Qaligofacilities, which indicates either the
site-specific vehicle composition or detector stvisy.

Table4 Measured slope and error variance

Region  Route Direction Station H R
NOVA I-66 East Bound 414 3.59 284
391 4.16 179
403 4.41 296
404 4.69 141
CA 1-80 East Bound 401195 8.82 1,559
400443 8.88 1,123
400445 9.43 1,880
400865 8.73 1,809

Kalman Filter Design

Kalman filter is a powerful adaptive filtering alghm that is built on the state space
representation of a dynamic system, consistingyfséem state transition equation and a
measurement equation. One of the critical aspéd¢tealesign of the Kalman filter is the
determination of these two equations. In thisgttite unknown speed is treated as the hidden
state, and a common instrument of assuming a rangalkimodel for the state transition is used,
yielding

Vi =Via T (2)
whereg is the state process error, with mean zero ariedn@@ Q. Further, based on the

empirical evidence on the relationship betweerratie of flow rate over occupancy and speed
that is illustrated in Figure 2, we proposed thesueement equation as below.

12



(a/0), = Hv, +¢ 3)

where
(q/o)i : ratio of flow rate over occupancy for time intaly,
H :observation parameter;
& : observation process error, with mean zero andwee R .

Collectively, equation (2) and (3) formulate thelidan filter to be used to estimate speed from
single loop measurements for congested trafficceicalibrated parameters, this Kalman filter
can be readily solved using standard Kalman resarmsguations (Kalman 1960). Specifically,
by denoting¥, as the measured information up to time intervale have the filtering process
as below.

Step 1: Priori state estimation:

Via= Vi (4)
Step 2: Prior state error variance estimation:
Pl =RL+Q (5)
Step 3: Kalman gain:
RH’
Ki = -V — (6)
HRHT +R

Step 4: Posterior state estimation:

V= \7i\_i—1 +K, ((ﬂj - HAi_i—l] (7)
0/

Step 5: Posterior state error variance estimation:
P =(1-KH)RL, 8)
where

Vi priori speed estimate for time intenialsing W_; ;

iji-1
Isi“‘_l: priori speed error covariance estimate for tintervali usingW,_;;
V' : posterior speed estimate, i.e., speed estimatetihfe intervali using ¥, ;

F}*: posterior speed error covariance estimate foe timtervali using¥, ;
K, : Kalman gain for time interval.

Again, recall that the focus of the method is tineste speeds under congested traffic conditions.
The research team uses an occupancy threshol®eotd 6eparate congested traffic from
uncongested traffic. By this threshold, experiemae shown that most free flow samples will be
separated from the congested samples (Coifman 200Rddition, the Kalman filter will not be

updated for missing values arising from either mg®ccupancy/flow, or the division of flow
rate by zero occupancy.

13



An interesting point worthy of mentioning is on ttmeaning of the factdd. To illustrate this, if
we simply drop off the error term in equation (Bplahen compare it with equation (1a), we can
find thatH is simply a unitless parameter that is proportioadhe conventionaj-factor or the
reciprocal of the effective mean vehicle length.other words, this factor reflects the historical
vehicle composition passing the station.

Calibration

Three parameters need to be calibrated, He. R, andQ for implementing the Kalman filter.
Taking advantage of the coexistence of both siloglp and dual loop stations in many FMSs
(Hellinga, 2002) (Wang and Nihan, 200), this stpdyposed to use the measurements from a
dual loop station to calibrate these parameterthiother single loop stations along the same
route. This proposition was based on the simylaritthe slope values, i.eH, for the stations
along a same route (see Figure 2 and Table 4).

Using the dual loop measurement as the calibralada, equation (3) can be regarded as a linear
regression to the origin; therefore, a linear regiean analysis will identify the optimhl, and
consequently the error tenand its varianc®. Similarly, e and its varianc€ can be

estimated by regarding equation (2) as a randork matel. The calibration procedure is
summarized below.

Step 1: Prepare calibration data, including occapathow rate, and speed,;

Step 2: Discard records with occupancy < 10% taimetongested traffic records;
Step 3: Estimateél using linear regression without intercept;

Step 4: Estimate andg; using equation (2) and (3), respectively;

Step 5: Estimat® andQ from estimated; ande, respectively;

Step 6: Apply calibrated parameters to single Isigpions along the same route.

EVALUATION

In order to evaluate the new methodology, the medginate speeds (only using the flow rate
and occupancy data from the stations) were comgargte measured speeds (using both loop
detectors), which served as ground truth.

Speed Estimation Performance of Proposed Method

Three performance measures were used for evalusgngroposed method: Mean Absolute

Error (MAE), Mean Absolute Percentage Error (MAP&)d Root Mean Square Error (RMSE),
as defined below.

MAE:%DZn]vi -V ()

i=1

maPE= 113 " Ylx100 (10)
n = v
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(11)

V,: the speed estimate for time interval
v;: the measured speed for time interival
n: the total number of measured speed observatised in the computation.

In order to illustrate the method’s performancehweéspect to different traffic conditions, the

performance measures are computed for three gamgasding to measured speeds, i.e., 0-15
mph, 15-30 mph, and 30-45 mph.

Data from NOVA station 404 and CA station 400865ewesed for calibrating separately the
single loops along each route (e.g. all NOVA staiwvere calibrated using only volume and
occupancy data from NOVA station 404). It is impot to note that the although calibration
dataset spans two month for NOVA stations and ooetimfor CA stations, in practice, traffic
condition data over a shorter time frame shoulér@ugh as long as reasonable amounts of
congested traffic can be observed during the tramé. Using the evaluation dataset, the
performance measures of the proposed method aserpesl in Table 5.

Table 5 Speed Estimation Performance

MAE (mph) MAPE (%) RM SE (mph)
Region Station 0-15 15-30 30-45 0-15 1530 3045 0-15 1530 30-45
mph mph mph mph mph mph mph mph mph
NOVA 414 193 447 832 18.3021.37 2260 281 5.32 9.22
391 156 288 591 13.621454 1598 185 3.94 7.23
403 1.08 247 459 11391140 1214 146 3.52 6.74
404 083 177 182 7.28 844 4.68 111 359 2.88

CA 401195 086 139 2.01 8.13 542 5.57 095 1.83 .833
400445 0.76 155 2.16 10.896.45 5.90 1.01 2.03 3.02
400443 0.65 139 1.00 8.83 5.50 2.77 1.14 179 813
400865 0.72 1.05 2.15 540 4.66 5.68 084 137 428

From Table 5, it is evident that the proposed allgor exhibits desirable performance for
congested traffic. Errors on the order of 1-3 mpghacceptable for traffic management and
traveler information applications. In additiony ach route, it can be seen that the method
performs best at the calibration stations (40440@B65), and that the performance degrades as
the distance increases between the single looprssadind the calibration station. This
observation is not unexpected, reflecting the iasee traffic composition variation with respect
to the distance from the calibrating dual loopistet. This result argues that the performance of
the algorithm may be further improved with a sipedfic calibration using portable detectors.

15



Moreover, the behavior of the proposed method auwgpical congestion cycle is demonstrated

in Figure 3. It is clear that for congested t@fthe estimated speeds closely track the measured
speeds, indicating the capability of the propodgdrahm to capture traffic state transition over
the congestion cycle.

(o]
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—s— Measured
—e— Estimated

Speed (mph)
= N W s~ 00 O N
O O O O O © o o

3:36 4:48 6:00 712 8:24 9:36 10:48
Timestamp

Figure 3 Algorithm behavior over atypical congestion cycle (NOVA 391 Jul 11, 2006)

METHOD INNOVATION DEMONSTRATION

The contributions of the proposed algorithm refolin (1) a combination of the uniform
stochastic filtering structure with the empiricéiservation of the relationship between the ratio
of flow rate over occupancy and speed , and (Damy-to-implement procedure for algorithm
calibration taking advantage of the coexistenceuafl loop and single loop stations in typical
FMSs. The benefits of these innovations are dematest below.

MEVL Adaptation under Congested Traffic

In practice, constarg-factors, either for the whole day or for congegiedods, are often used
for single loop speed estimation. In this stutlg, proposed algorithm tried to adapt MEVL at
each time interval during congested traffic. The\NlEadaptation effect is manifested in Figure
4. As seen in plot (a), for the congested timeggethe proposed approach generates speed
estimates that closely track the measured spegdsirBer computing the MEVL using the
estimated speeds and measured speeds, we fourndettestimated MEVL close tracks the
measured MEVL, indicating a desirable MEVL adagtghias seen in plot (b). Note it is clear
that the measured MEVL is not constant during ¢bisgested period, indicating that constant
MEVL will not be able to pick up this MEVL variatio

16
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Figure4 MEVL Adaptation effect under congested traffic (CA 400443, July 3, 2006)

Algorithm Calibration Performance

Recall the proposed algorithm takes advantageeotdexistence of dual and single loop stations
for algorithm calibration, in which the stable t&aship between/o and speed for a route (see
Table 4) is used. Similarly, the relationship betw adjacent single loop and dual loop stations
has been exploited in other studies (e.g., Hell2@@2). Obviously, the most desirable approach
is expected to yield reasonable results when #fédicondition from upstream and downstream
stations deviate significantly. The benefit of reposed calibration procedure is demonstrated
in Figure 5. In Figure 5 (b), we found the meadwspeeds at CA 400443 are significantly
different from those for CA 400445 for time periwdm 10:10 to 10:50, while for the same time

period, as is in plot (a), the proposed algorittenagates speed estimates (for CA 400443) that
closely track the measured speeds.
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Figure5 Calibration performanceillustration

CONCLUSION

This project developed a Kalman filter to perforimgée loop speed estimation for congested
traffic. The filter design is rooted in the empai investigation into the measurements from
single loop detectors, which showed that a linekationship is acceptable for relating the ratio
of flow rate over occupancy and the speed. Byhkrrassuming a random walk model for the
hidden speed process, the Kalman filter is capafodstimating speed accurately in an online
fashion when the flow rate and occupancy data besawailable. Taking advantage of the

coexistence of dual loop and single loop stationypical freeway management systems, the
filter parameters can be easily calibrated for sepdnd initiating the algorithm.

The proposed algorithm was tested using data fraorurban regions in Northern Virginia and
Northern California. The results showed that theppsed algorithm can generate speeds with
error on the order of 1-3 mph for congested traffinich is acceptable in applying the estimated
speeds in intelligent transportation systems appbas. Given this desirable performance, the

18



proposed algorithm is being implemented and apgbedingle loop detectors on Virginia
freeways.
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Notations

v, = measuredpeedor timeintervali;

g, = measuredlow ratefor timeintervali;

0, =measuredccupancyor timeintervali;

g, = g -factorfor timeintervali;

|, = meaneffectivevehiclelength(MEVL) for timeintervali;
H =observatia parametempropotionato thereciprocabf | ;
& =observatio proces®rrors;

R = observatio proces®rror varance;

e =stateproces®rrors;

Q =stateproces®rror varance;
W, =measuremetsup to timeintervali;

Vi, = priori speecestimateor timeintervali;

V" = posteriorspeedestimatédor timeintervali;

FA}‘]_I = priori speeckrror varanceestimateor timeintervali;

If’i+ = posteriorspeeckrror varanceestimatdor timeintervali;

K, =Kalmangainfor timeintervali,

V. =speedestimatdor timeintervali;
n = totalnumberof samplesn computingtheperformanemeasure;
| =timeinterva index
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