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INTRODUCTION 
 
Traffic surveillance plays a central role in achieving the potential promised by Intelligent 
Transportation Systems (ITS).  In particular, traveler’s generally judge their experience based on 
their speed of travel (or travel time).  Thus, state and local transportation agencies, as well as 
private traffic information service providers, are very interested in obtaining accurate speed data.  
There are many technical approaches to obtaining this data (either measured or estimated).  Of 
these, inductive loop detectors are, arguably, the most widely deployed traffic condition 
surveillance device.  In some cases, inductive loop detectors are installed in pairs in a travel lane 
in order to allow for direct speed measurement.  However, in many cases, a single loop detector 
is installed in a lane due to space or economic considerations.  Direct measurements from single 
loop detectors are limited to vehicle counts and occupancy (defined as the portion of time that 
the detector senses a vehicle – serving as a surrogate measure of traffic density), while speeds are 
not directly measured.  Therefore, traffic engineers have devoted considerable effort to develop 
methods to estimate speeds from the available direct single loop measurements. 
 
Current single loop speed estimation practice can be broadly classified into two categories: (1) g-
factor approach, and (2) stochastic filtering approach.  In the g-factor approach, an estimate of 
the average vehicle length of all vehicles passing over the detector during the measurement 
interval is treated as a conversion factor for estimating speed using the measured occupancy and 
volume.   In the stochastic filtering approach, the unobservable speed process is related to the 
measurement processes using a stochastic filter, usually a Kalman filter.  
 
This research project sought specifically to develop an accurate speed estimation methodology 
for single loop detectors under congested conditions.  In this case, the partner in this research, the 
Virginia Department of Transportation (VDOT), desired the ability to improve estimation of 
travel times on highly-congested suburban freeways, such as I-66 and I-95 in Northern Virginia. 
In particular, errors in travel time estimation during times of congestion were of great concern.  
In speaking with VDOT officials, it became clear that general  knowledge that traffic was 
operating at or near free-flow conditions (i.e. 45 miles/hour or higher) was sufficient when 
congestion was not being experienced.  However, there was a need for accurate speed estimates 
under congested conditions.  Therefore, the research team developed a method using the Kalman 
filter technique, based on an empirical investigation into the relationship among the single loop 
measurements.  Following a literature review, the report presents the proposed single loop speed 
estimation method.  Afterwards, the proposed approach is evaluated and the innovations of the 
approach are demonstrated.  
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LITERATURE REVIEW 
 
As stated in the introduction, current practices in single loop speed estimation can be roughly 
classified as either a g-factor approach, or a stochastic filtering approach.  Focusing on “station 
level” speed estimation (i.e. average speed over all lanes at a specific directional cross section of 
a facility), this section presents a review of the literature organized based on this classification 
scheme. 
 
g-factor approach 
 
The g-factor approach is based on the fundamental traffic stream model, i.e., flow = density * 
speed.  As stated earlier, if one uses occupancy as a surrogate for density, the following 
relationship between speed, flow rate, occupancy, and vehicle length may be derived as follows  
for any sampling interval i (Coifman 2001). 
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where 
vi: speed for time interval i; 
qi: flow rate for time interval i; 
l i : mean effective vehicle length (MEVL) for time interval i; 
gi: g-factor for time interval i. 
 

Examining equations (1a) and  (1b), one will note that the g-factor, gi, is simply the reciprocal of 
l i, reflecting the composition of the vehicle population passing the detection zone within the 
sampling interval i.  Of course, li cannot be directly measured with inductive loops, and l i (or gi) 
must be estimated.  In general, the determining factor for gi is the percentage of trucks in the 
traffic stream, given their significantly longer length than passenger cars.  
 
The use of a constant gi or l i across sampling intervals had been the focus of early studies 
(Courage et al. 1976, Mikhalkin et al. 1972); however, later investigations (as well as field 
experience) have shown that gi or l i are generally not constant, but rather time- and space-varying 
(Hall and Persaud 1989; Pushkar et al. 1994).  This variation of g-factor values should certainly 
be expected due to the variation of the truck percentages between different sampling intervals 
and locations.  Consequently, many studies have been conducted to dynamically estimate the 

ig value.   

 
Guided by empirical observations that gi approaches a constant as traffic conditions become 
congested, Coifman (2001) developed a simple online algorithm in which exponential smoothing 
was used for estimating l i for free flow conditions, and then for congested traffic conditions, the 
l i was estimated from the immediately preceding non-congested traffic conditions.  
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Jia et al. (2001) presented empirical evidence showing that gi varies both spatially and 
temporally. In addition, an autoregressive filter was used to track the g-factor over time.  In order 
to cancel the effect of delay, a corrector was introduced based on periodic natural of g-factor 
during weekdays. 
 
Wang and Nihan (2000) proposed a g-factor estimation procedure using log-linear regression.  
Their model was calibrated using data from dual loop detector stations that were installed in the 
proximity of the single loop detectors within the freeway management system (FMS). A 
comparison with speed estimation using a fixed g-factor showed an improvement in speed 
estimation accuracy. As is pointed out in Hellinga (2002), however, they did not show the 
transferability of the log-linear regression model across different FMSs or on facilities managed 
by the same FMS.  
 
Hellinga (2002) proposed an approach enhancing speed estimation for FMSs equipped with both 
dual loop stations and single loop stations; basically, the single loop station and its adjacent dual 
loop stations are treated as a pair, and the g-factor estimated from the dual loop stations are 
applied to the single loop stations to improve speed estimation.  Recognizing the systematic bias 
resulting from the variation of vehicle populations passing the paired stations, a volume weighted 
exponential smoothing technique was proposed to improve the speed estimation. Considering the 
implicit assumption of a uniform g-factor across the paired stations, the performance of this 
approach is naturally expected to degrade when the traffic conditions between the paired stations 
are significantly different. 
 
 
Stochastic Filtering Approach 
 
As opposed to the g-factor approach, the stochastic filtering approach relates the speed “process” 
directly to the measurement processes, considering the stochastic errors of the processes.  Dailey 
(1999) designed an extended Kalman filter seeded with pre-calibrated historical mean vehicle 
length and speed variance.  This design implicitly assumes a constant expected value for the ratio 
of individual effective vehicle length over speed for all the vehicles passing the detection zone 
within each sampling interval, which might not hold for all cases.  For example, trucks and 
passenger cars could have comparable speeds while the effective length varies significantly.  
Based on Dailey (1999), Ye (2006) proposed an algorithm using Unscented Kalman filters to 
resolve the issues in extended Kalman filter, especially the filter instability due to the 
linearization; however, the concerns discussed above remain unresolved.   
 
 
PROPOSED SINGLE LOOP SPEED ESTIMATION METHOD 
 
This section presents the design of a new single-loop speed estimation method.  As is mentioned 
in the introduction section, the fundamental rationale of the proposed method relies on the 
empirical investigation into the single loop measurements at the station level.  Therefore, in this 
section we will first describe the data and the empirical evidence observed from these data.  
Afterwards, based on the empirical evidence, the design of a Kalman filter and the corresponding 
calibration procedure is described.  
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Data 
 
In this study, the research team acquired freeway traffic datasets from two different metropolitan 
regions.  Measurements from loop detector stations installed along I-66 eastbound in Northern 
Virginia (NOVA – a suburb of Washington, D.C.), and along I-80 eastbound in the Bay Area of 
California (CA) were used in this study.  Please refer to the maps in Figure 1 for the station 
locations, and Table 1 for station descriptions.   

  
(a) Selected stations in Northern Virginia 
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(b) Selected stations in California 

 
Figure 1 Approximate station locations 

 
Table 1 Selected station description 

 
Region Route Direction Station Number of Lanes Mile Marker 

414 4 57.96 
391 4 58.29 
403 4 62.89 

NOVA I-66 East Bound 

404 4 63.41 
      

401195 4 14.47 
400445 4 15.97 
400443 4 16.32 

CA I-80 East Bound 

400865 4 20.96 
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In this study, all eight selected stations are dual loop detector stations (this allows the research 
team to use only single loop measurements for the estimation methodology, and then compare 
the results to the measured speeds from the dual loops).  The measurements for these stations are 
aggregated at 5-minute intervals, and are divided into a calibration dataset and an 
evaluation/investigation dataset as described in Table 2 and Table 3.  These tables describe the 
traffic conditions experienced at each station by reporting the number of observations falling into 
each of the three speed categories, 0-15 mph, 15-30 mph, and 30-45 mph.  Note, considering the 
focus of the proposed method is on congested traffic, the statistics for observations with speed 
greater than 45 mph are not included.   
 

Table 2 Calibration dataset description 
 

Sample Size 
 Station 

 0-15 
mph 

15-30 
mph 

30-45 
mph 

  
 Time Period 

414  541 779 219    5/1/2006~6/30/2006 
391  1040 774 270    5/1/2006~6/30/2006 
403  924 1322 453    5/1/2006~6/30/2006 
404  399 951 1637    5/1/2006~7/31/2006 

         
401195  7 280 351    5/4/2006~5/31/2006 
400445  0 159 444    5/4/2006~5/31/2006 
400443  1 79 552    5/4/2006~5/31/2006 
400865  11 138 421    5/4/2006~5/31/2006 
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Table 3 Evaluation/investigation dataset description 
 

Sample Size 
 Station 

 0-15 
mph 

15-30 
mph 

30-45 
mph   

 Time Period 

414  787 1024 372    7/1/2006~10/3/2006 
391  1471 1130 413    7/1/2006~10/3/2006 
403  1578 1114 465    7/1/2006~10/3/2006 
404  526 855 1156    8/1/2006~10/3/2006 

         
401195  16 313 361    6/1/2006~7/3/2006 
400445  35 259 421    6/1/2006~7/3/2006 
400443  36 169 536    6/1/2006~7/3/2006 
400865  56 171 385    6/1/2006~7/3/2006 

 
 
Empirical Investigation of the Single Loop Measurements 
 
Using the evaluation/investigation datasets, Figure 2 showed the (q/o, v) pairs for all stations.  
Note in the plots, the whole range of data was included to show the whole picture of empirical 
evidence. 
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Figure 2  q/o vs. v plots  

 
 
When examining the plots in Figure 2, first, one will notice that a linear relationship between q/o 
and v is evident under congested traffic conditions at all the stations with each (q/o, v) pair 
deviating closely around an overall linear trend (slope denoted by H). This observation showed 
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that a linear relationship is acceptable for relating q/o and v.  Second, the linear relationships 
consistently pass through the origin, supporting the slope and hence the variance of the errors 
(denoted by R) around the slope can be estimated using a linear regression without intercept 
approach.  Moreover, under uncongested traffic conditions, the linear (q/o, v) relationship ceases 
to exist, which agrees with Coifman (2001), i.e., even with longer sampling intervals, speed 
estimates for free flowing traffic are quite noisy.   
 
Furthermore, the H and R were computed using calibration datasets for each station and the 
results were presented in Table 4. It can be observed that stations along the same route have 
consistent parameters, indicating a stable historical pattern of H along a route during congested 
traffic conditions. This implies a strategy of using dual loop stations to calibrate these parameters 
for the single loop stations on the same route.  It is interesting to note the significant difference in 
parameters between the Northern Virginia and California facilities, which indicates either the 
site-specific vehicle composition or detector sensitivity. 
 

Table 4 Measured slope and error variance 
 

Region Route Direction Station H R 
NOVA I-66 East Bound 414 3.59 284 

   391 4.16 179 
   403 4.41 296 
   404 4.69 141 
      

CA I-80 East Bound 401195 8.82 1,559 
   400443 8.88 1,123 
   400445 9.43 1,880 
   400865 8.73 1,809 

 
 
Kalman Filter Design 
 
Kalman filter is a powerful adaptive filtering algorithm that is built on the state space 
representation of a dynamic system, consisting of a system state transition equation and a 
measurement equation. One of the critical aspects of the design of the Kalman filter is the 
determination of these two equations.  In this study, the unknown speed is treated as the hidden 
state, and a common instrument of assuming a random walk model for the state transition is used, 
yielding  
 

iii evv += −1                                                                              (2) 

 
where ie  is the state process error, with mean zero and variance Q .  Further, based on the 

empirical evidence on the relationship between the ratio of flow rate over occupancy and speed 
that is illustrated in Figure 2, we proposed the measurement equation as below. 
 



 13 

( ) iii Hvoq ε+=                                       (3)  

 
where  

( )ioq : ratio of flow rate over occupancy for time interval i; 

:H observation parameter;   

iε : observation process error, with mean zero and variance R . 

 
Collectively, equation (2) and (3) formulate the Kalman filter to be used to estimate speed from 
single loop measurements for congested traffic.  Given calibrated parameters, this Kalman filter 
can be readily solved using standard Kalman recursion equations (Kalman 1960).  Specifically, 
by denoting iΨ  as the measured information up to time interval i, we have the filtering process 

as below. 
 

Step 1: Priori state estimation: 
 +

−
−

− = 11
ˆˆ iii vv                                                           (4) 

Step 2: Prior state error variance estimation: 
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Step 5: Posterior state error variance estimation:  

( ) −
−

+ −= 1
ˆ1ˆ

iiii PHP K          (8) 

where 
−

−1
ˆ

iiv :  priori speed estimate for time interval i using 1−Ψi ; 
−
−1

ˆ
iiP : priori speed error covariance estimate for time interval i  using 1−Ψi ; 

+
iv̂ : posterior speed estimate, i.e., speed estimated for time interval i using iΨ ; 

+
iP̂ : posterior speed error covariance estimate for time interval i  using iΨ ; 

iΚ : Kalman gain for time interval i . 

 
Again, recall that the focus of the method is to estimate speeds under congested traffic conditions.  
The research team uses an occupancy threshold of 10% to separate congested traffic from 
uncongested traffic. By this threshold, experience has shown that most free flow samples will be 
separated from the congested samples (Coifman 2001).  In addition, the Kalman filter will not be 
updated for missing values arising from either missing occupancy/flow, or the division of flow 
rate by zero occupancy. 
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An interesting point worthy of mentioning is on the meaning of the factor H.  To illustrate this, if 
we simply drop off the error term in equation (3) and then compare it with equation (1a), we can 
find that H is simply a unitless parameter that is proportional to the conventional g-factor or the 
reciprocal of the effective mean vehicle length.  In other words, this factor reflects the historical 
vehicle composition passing the station. 
 
Calibration 
 
Three parameters need to be calibrated, i.e., H , R , and Q  for implementing the Kalman filter.  
Taking advantage of the coexistence of both single loop and dual loop stations in many FMSs 
(Hellinga, 2002) (Wang and Nihan, 200), this study proposed to use the measurements from a 
dual loop station to calibrate these parameters for the other single loop stations along the same 
route.  This proposition was based on the similarity of the slope values, i.e., H, for the stations 
along a same route (see Figure 2 and Table 4).  
 
Using the dual loop measurement as the calibration data, equation (3) can be regarded as a linear 
regression to the origin; therefore, a linear regression analysis will identify the optimal H, and 
consequently the error term εi and its variance R.  Similarly, ei and its variance Q can be 
estimated by regarding equation (2) as a random walk model.  The calibration procedure is 
summarized below.  
 
Step 1: Prepare calibration data, including occupancy, flow rate, and speed; 
Step 2: Discard records with occupancy < 10% to retain congested traffic records; 
Step 3: Estimate H using linear regression without intercept; 
Step 4: Estimate ei and εi using equation (2) and (3), respectively; 
Step 5: Estimate R and Q from estimated εi and ei, respectively; 
Step 6: Apply calibrated parameters to single loop stations along the same route. 
 
 
EVALUATION  
 
In order to evaluate the new methodology, the model estimate speeds (only using the flow rate 
and occupancy data from the stations) were compared to the measured speeds (using both loop 
detectors), which served as ground truth. 
 
Speed Estimation Performance of Proposed Method 
 
Three performance measures were used for evaluating the proposed method:  Mean Absolute 
Error (MAE), Mean Absolute Percentage Error (MAPE), and Root Mean Square Error (RMSE), 
as defined below. 
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where 

iv̂ :  the speed estimate for time interval i ; 

iv :  the measured speed for time interval i ; 

n :  the total number of measured speed observations used in the computation. 
 

In order to illustrate the method’s performance with respect to different traffic conditions, the 
performance measures are computed for three groups according to measured speeds, i.e., 0-15 
mph, 15-30 mph, and 30-45 mph.   
 
Data from NOVA station 404 and CA station 400865 were used for calibrating separately the 
single loops along each route (e.g. all NOVA stations were calibrated using only volume and 
occupancy data from NOVA station 404).  It is important to note that the although calibration 
dataset spans two month for NOVA stations and one month for CA stations, in practice, traffic 
condition data over a shorter time frame should be enough as long as reasonable amounts of 
congested traffic can be observed during the time frame.  Using the evaluation dataset, the 
performance measures of the proposed method are presented in Table 5.  
 

Table 5 Speed Estimation Performance  
 

MAE (mph) MAPE (%) RMSE (mph) 
Region Station 0-15 

mph 
15-30 
mph 

30-45 
mph 

0-15 
mph 

15-30 
mph 

30-45 
mph 

0-15 
mph 

15-30 
mph 

30-45 
mph 

NOVA 414 1.93 4.47 8.32 18.30 21.37 22.60 2.81 5.32 9.22 
 391 1.56 2.88 5.91 13.62 14.54 15.98 1.85 3.94 7.23 
 403 1.08 2.47 4.59 11.39 11.40 12.14 1.46 3.52 6.74 
 404 0.83 1.77 1.82 7.28 8.44 4.68 1.11 3.59 2.88 
              

CA 401195 0.86 1.39 2.01 8.13 5.42 5.57 0.95 1.83 3.83 
 400445 0.76 1.55 2.16 10.89 6.45 5.90 1.01 2.03 3.02 
 400443 0.65 1.39 1.00 8.83 5.50 2.77 1.14 1.79 1.38 
 400865 0.72 1.05 2.15 5.40 4.66 5.68 0.84 1.37 2.84 

 
 
From Table 5, it is evident that the proposed algorithm exhibits desirable performance for 
congested traffic. Errors on the order of 1-3 mph are acceptable for traffic management and 
traveler information applications.  In addition, for each route, it can be seen that the method 
performs best at the calibration stations (404 and 400865), and that the performance degrades as 
the distance increases between the single loop stations and the calibration station.  This 
observation is not unexpected, reflecting the increased traffic composition variation with respect 
to the distance from the calibrating dual loop stations.  This result argues that the performance of 
the algorithm may be further improved with a site-specific calibration using portable detectors. 
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Moreover, the behavior of the proposed method over a typical congestion cycle is demonstrated 
in Figure 3.  It is clear that for congested traffic, the estimated speeds closely track the measured 
speeds, indicating the capability of the proposed algorithm to capture traffic state transition over 
the congestion cycle.  
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Figure 3 Algorithm behavior over a typical congestion cycle (NOVA 391 Jul 11, 2006) 

 
 
METHOD INNOVATION DEMONSTRATION 
 
The contributions of the proposed algorithm result from (1) a combination of the uniform 
stochastic filtering structure with the empirical observation of the relationship between the ratio 
of flow rate over occupancy and speed , and (2) an easy-to-implement procedure for algorithm 
calibration taking advantage of the coexistence of dual loop and single loop stations in typical 
FMSs. The benefits of these innovations are demonstrated below. 
 
MEVL Adaptation under Congested Traffic 
 
In practice, constant g-factors, either for the whole day or for congested periods, are often used 
for single loop speed estimation.  In this study, the proposed algorithm tried to adapt MEVL at 
each time interval during congested traffic. The MEVL adaptation effect is manifested in Figure 
4.  As seen in plot (a), for the congested time period, the proposed approach generates speed 
estimates that closely track the measured speeds. By further computing the MEVL using the 
estimated speeds and measured speeds, we found that the estimated MEVL close tracks the 
measured MEVL, indicating a desirable MEVL adaptability, as seen in plot (b). Note it is clear 
that the measured MEVL is not constant during this congested period, indicating that constant 
MEVL will not be able to pick up this MEVL variation. 
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Figure 4  MEVL Adaptation effect under congested traffic (CA 400443, July 3, 2006) 

  
 
Algorithm Calibration Performance 
 
Recall the proposed algorithm takes advantage of the coexistence of dual and single loop stations 
for algorithm calibration, in which the stable relationship between q/o and speed for a route (see 
Table 4) is used.  Similarly, the relationship between adjacent single loop and dual loop stations 
has been exploited in other studies (e.g., Hellinga 2002).  Obviously, the most desirable approach 
is expected to yield reasonable results when the traffic condition from upstream and downstream 
stations deviate significantly.  The benefit of the proposed calibration procedure is demonstrated 
in Figure 5.  In Figure 5 (b), we found the measured speeds at CA 400443 are significantly 
different from those for CA 400445 for time period from 10:10 to 10:50, while for the same time 
period, as is in plot (a), the proposed algorithm generates speed estimates (for CA 400443) that 
closely track the measured speeds. 
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Figure 5 Calibration performance illustration 
 
 
CONCLUSION 
 
This project developed a Kalman filter to perform single loop speed estimation for congested 
traffic.  The filter design is rooted in the empirical investigation into the measurements from 
single loop detectors, which showed that a linear relationship is acceptable for relating the ratio 
of flow rate over occupancy and the speed.  By further assuming a random walk model for the 
hidden speed process, the Kalman filter is capable of estimating speed accurately in an online 
fashion when the flow rate and occupancy data becomes available.  Taking advantage of the 
coexistence of dual loop and single loop stations in typical freeway management systems, the 
filter parameters can be easily calibrated for seeding and initiating the algorithm.  
 
The proposed algorithm was tested using data from two urban regions in Northern Virginia and 
Northern California. The results showed that the proposed algorithm can generate speeds with 
error on the order of 1-3 mph for congested traffic, which is acceptable in applying the estimated 
speeds in intelligent transportation systems applications.  Given this desirable performance, the 
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proposed algorithm is being implemented and applied for single loop detectors on Virginia 
freeways. 
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Notations 
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; interval for time estimate speed =ˆ

; interval for timegain Kalman  =

; interval for time estimate anceerror vari speedposterior =ˆ

; interval for time estimate anceerror vari speed priori=ˆ

; interval for time estimate speedposterior =ˆ

; interval for time estimate speed priori=ˆ

; interval  time toup tsmeasuremen =

ance;error vari process state =

errors; process state =
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errors; processn observatio =

; of reciprocal  the tolpropotiona parameter,n observatio =

; interval for time (MEVL)length   vehicleeffectivemean  =

; interval for timefactor - =

; interval for timeoccupancy  measured =

; interval for time rate flow measured =
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